Contact Us

Blood Education


Blood accounts for 7% of the human body weight,[4] with an average density of approximately 1060 kg/m3, very close to pure water’s density of 1000 kg/m3.[5] The average adult has a blood volume of roughly 5 liters (1.3 gal), composed of plasma and several kinds of cells (occasionally called corpuscles); these formed elements of the blood are erythrocytes (red blood cells), leukocytes (white blood cells), and thrombocytes (platelets). By volume, the red blood cells constitute about 45% of whole blood, the plasma about 54.3%, and white cells about 0.7%.

One microliter of blood contains:

  • 4.7 to 6.1 million (male), 4.2 to 5.4 million (female) erythrocytes:[6] In most mammals, mature red blood cells lack a nucleus and organelles. They contain the blood’s hemoglobin and distribute oxygen. The red blood cells (together with endothelial vessel cells and other cells) are also marked by glycoproteins that define the different blood types. The proportion of blood occupied by red blood cells is referred to as the hematocrit, and is normally about 45%. The combined surface area of all red blood cells of the human body would be roughly 2,000 times as great as the body’s exterior surface.[7]
  • 4,000–11,000 leukocytes:[8] White blood cells are part of the immune system; they destroy and remove old or aberrant cells and cellular debris, as well as attack infectious agents (pathogens) and foreign substances. The cancer of leukocytes is called leukemia.
  • 200,000–500,000 thrombocytes:[8] thrombocytes, also called platelets, are responsible for blood clotting (coagulation). They change fibrinogen into fibrin. This fibrin creates a mesh onto which red blood cells collect and clot, which then stops more blood from leaving the body and also helps to prevent bacteria from entering the body.


Red blood cells (also referred to as erythrocytes) are the most common type of blood cell and the vertebrate organism’s principal means of delivering oxygen (O2) to the body tissues via the blood flow through the circulatory system. They take up oxygen in the lungs or gills and release it while squeezing through the body’s capillaries.

These cells’ cytoplasm is rich in hemoglobin, an iron-containing biomolecule that can bind oxygen and is responsible for the blood’s red color.


White blood cells (WBCs), or leukocytes (also spelled “leucocytes”), are cells of the immune system defending the body against both infectious disease and foreign materials. Five[1] different and diverse types of leukocytes exist, but they are all produced and derived from a multipotent cell in the bone marrow known as a hematopoietic stem cell. Leukocytes are found throughout the body, including the blood and lymphatic system.[2]

The number of WBCs in the blood is often an indicator of disease. There are normally between 4×109 and 1.1×1010 white blood cells in a litre of blood, making up approximately 1% of blood in a healthy adult.[3] An increase in the number of leukocytes over the upper limits is called leukocytosis, and a decrease below the lower limit is called leukopenia. The physical properties of leukocytes, such as volume, conductivity, and granularity, may change due to activation, the presence of immature cells, or the presence of malignant leukocytes in leukemia.


Platelets, or thrombocytes (from Greek θρόμβος — «clot» and κύτος — «cell»), are small, irregularly-shaped anuclear cells (i.e. cells that do not have a nucleus containing DNA), 2-3 µm in diameter[1], which are derived from fragmentation of precursor megakaryocytes. The average lifespan of a platelet is between 8 and 12 days. Platelets play a fundamental role in hemostasis and are a natural source of growth factors. They circulate in the blood of mammals and are involved in hemostasis, leading to the formation of blood clots.


If the number of platelets is too low, excessive bleeding can occur. However, if the number of platelets is too high, blood clots can form (thrombosis), which may obstruct blood vessels and result in such events as a stroke, heart attack, pulmonary embolism or the blockage of blood vessels to other parts of the body, such as the extremities of the arms or legs. An abnormality or disease of the platelets is called a thrombocytopathy[2], which could be either a low number of platelets (thrombocytopenia), a decrease in function (thrombasthenia), or an increase in the number of (thrombocytosis). There are disorders that reduce the number of platelets, such as heparin-induced thrombocytopenia (HIT) or thrombotic thrombocytopenic purpura (TTP) that typically cause thromboses, or clots, instead of bleeding.

Platelets release a multitude of growth factors including Platelet-derived growth factor (PDGF), a potent chemotactic agent, and TGF beta, which stimulates the deposition of extracellular matrix. Both of these growth factors have been shown to play a significant role in the repair and regeneration of connective tissues. Other healing-associated growth factors produced by platelets include basic fibroblast growth factor, insulin-like growth factor 1, platelet-derived epidermal growth factor, and vascular endothelial growth factor. Local application of these factors in increased concentrations through Platelet-rich plasma (PRP) has been used as an adjunct to wound healing for several decades


Bone marrow is the flexible tissue found in the hollow interior of bones. In adults, marrow in large bones produces new blood cells. It constitutes 4%[1] of total body weight, i.e. approximately 2.6 kg (5.7 lbs.) in adults.

Bone marrow contains three types of stem cells:[2]

To diagnose diseases involving the bone marrow, a bone marrow aspiration is sometimes performed. This typically involves using a hollow needle to acquire a sample of red bone marrow from the crest of the ilium under general or local anesthesia. The average number of cells in a leg bone is about 440,000,000,000 (440×109).


The stem cells are harvested directly from the red marrow in the crest of the ilium, often under general anesthesia. The procedure is minimally invasive and does not require stitches afterwards. Depending on the donor health and reaction to the procedure, the actual harvesting can be an outpatient procedure or requiring 1–2 days of recovery in the hospital.[3] Another option is to administer certain drugs that stimulate the release of stem cells from the bone marrow into circulating blood.[4] An IV is inserted into the donor’s arm, and the stem cells are filtered out of the blood. The procedure is similar to donating blood or platelets.

It may also be taken from the sternum. The tibia may seem a good source, since it is very superficial. However, except in children, this bone marrow does not contain any substantial amount of red bone marrow, only yellow bone marrow.[1]